Commutativity of *-Prime Rings with Generalized Derivations
نویسندگان
چکیده
منابع مشابه
On Generalized Derivations and Commutativity of Prime Rings with Involution
Let R be a ring with involution ′∗′. A map δ of the ring R into itself is called a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. An additive map F : R → R is called a generalized derivation on R if F(xy) = F(x)y + xδ(y) for all x, y ∈ R, Permanent address: Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh202002, India 292 Shakir Ali and Husain Alhazmi whe...
متن کاملOn derivations and commutativity in prime rings
Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0. 1. Introduction. Let R be a prime ring and d a nonzero derivation of R. Define [x, y] 1 = [x, y] = xy − yx, then an Engel condition is a polynomial [x, y] k = [[x, y] k−1 ,y]
متن کاملGeneralized Derivations of Prime Rings
Let R be an associative prime ring, U a Lie ideal such that u2 ∈ U for all u ∈ U . An additive function F : R→ R is called a generalized derivation if there exists a derivation d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. In this paper, we prove that d = 0 or U ⊆ Z(R) if any one of the following conditions holds: (1) d(x) ◦F(y)= 0, (2) [d(x),F(y) = 0], (3) either d(x) ◦ F(y) ...
متن کاملLeft Annihilator of Identities Involving Generalized Derivations in Prime Rings
Let $R$ be a prime ring with its Utumi ring of quotients $U$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...
متن کاملGeneralized Derivations on Prime Near Rings
Let N be a near ring. An additive mapping f : N → N is said to be a right generalized (resp., left generalized) derivation with associated derivation d onN if f(xy) = f(x)y + xd(y) (resp., f(xy) = d(x)y + xf(y)) for all x, y ∈ N. A mapping f : N → N is said to be a generalized derivation with associated derivation d onN iff is both a right generalized and a left generalized derivation with asso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti del Seminario Matematico della Università di Padova
سال: 2011
ISSN: 0041-8994
DOI: 10.4171/rsmup/125-5